ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57507
Тема:    [ Неравенства для элементов треугольника (прочее) ]
Сложность: 4+
Классы: 9
В корзину
Прислать комментарий

Условие

На сторонах BC, CA, AB треугольника ABC взяты точки X, Y, Z так, что прямые AX, BY, CZ пересекаются в одной точке O. Докажите, что из отношений  OA : OX, OB : OY, OC : OZ по крайней мере одно не больше 2 и одно не меньше 2.

Решение

Предположим, что все данные отношения меньше 2. Тогда  SABO + SAOC < 2SXBO + 2SXOC = 2SOBC, SABO + SOBC < 2SAOC и  SAOC + SOBC < 2SABO. Сложив эти неравенства, приходим к противоречию. Аналогично доказывается, что одно из данных соотношений не больше 2.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 10
Название Неравенства для элементов треугольника
Тема Неравенства для элементов треугольника.
параграф
Номер 13
Название Неравенства в треугольниках
Тема Неравенства для элементов треугольника (прочее)
задача
Номер 10.095

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .