ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57508
Тема:    [ Неравенства для элементов треугольника (прочее) ]
Сложность: 4+
Классы: 9
В корзину
Прислать комментарий

Условие

Окружность S1 касается сторон AC и AB треугольника ABC, окружность S2 касается сторон BC и AB, кроме того, S1 и S2 касаются друг друга внешним образом. Докажите, что сумма радиусов этих окружностей больше радиуса вписанной окружности S.

Решение

Обозначим радиусы окружностей S, S1 и S2 через r, r1 и r2. Пусть треугольники AB1C1 и A2BC2 подобны треугольнику ABC, причем коэффициенты подобия равны r1/r и r2/r соответственно. Окружности S1 и S2 являются вписанными для треугольников AB1C1 и A2BC2. Следовательно, эти треугольники пересекаются, так как иначе окружности S1 и S2 не имели бы общих точек. Поэтому  AB1 + A2B > AB, т. е. r1 + r2 > r.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 10
Название Неравенства для элементов треугольника
Тема Неравенства для элементов треугольника.
параграф
Номер 13
Название Неравенства в треугольниках
Тема Неравенства для элементов треугольника (прочее)
задача
Номер 10.096

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .