ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57592
Темы:    [ Длины сторон, высот, медиан и биссектрис ]
[ Теорема косинусов ]
Сложность: 3-
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Докажите, что:
а)  ma2 = (2b2 + 2c2 - a2)/4;
б)  ma2 + mb2 + mc2 = 3(a2 + b2 + c2)/4.

Решение

а) Пусть A1 — середина отрезка BC. Складывая равенства AB2 = AA12 + A1B2 - 2AA1 . BA1cos BA1A и AC2 = AA12 + A1C2 - 2AA1 . A1C cos CA1A и учитывая, что cos BA1A = - cos CA1A, получаем требуемое.
б) Очевидным образом следует из задачи а).

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 12
Название Вычисления и метрические соотношения
Тема Взаимоотношения между сторонами и углами треугольников. Решение треугольников.
параграф
Номер 2
Название Теорема косинусов
Тема Теорема синусов
задача
Номер 12.011

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .