ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57608
Тема:    [ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 4
Классы: 9
В корзину
Прислать комментарий

Условие

Докажите, что  $ {\frac{1}{r^3}}$ - $ {\frac{1}{r_a^3}}$ - $ {\frac{1}{r_b^3}}$ - $ {\frac{1}{r_c^3}}$ = $ {\frac{12R}{S^2}}$.

Решение

Так как  S = rp = ra(p - a) = rb(p - b) = rc(p - c), то выражение в левой части равно  (p3 - (p - a)3 - (p - b)3 - (p - c)3)/S3 = 3abc/S3. Остается заметить, что abc/S = 4R (задача 12.1).

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 12
Название Вычисления и метрические соотношения
Тема Взаимоотношения между сторонами и углами треугольников. Решение треугольников.
параграф
Номер 3
Название Вписанная, описанная и вневписанная окружности; их радиусы
Тема Вписанная, описанная и вневписанная окружности; их радиусы
задача
Номер 12.026

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .