ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57627
Темы:    [ Тангенсы и котангенсы углов треугольника ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема синусов ]
[ Теорема косинусов ]
Сложность: 5-
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Пусть α, β и γ - углы треугольника ABC. Докажите, что
а)  ctg$ \alpha$ + ctg$ \beta$ + ctg$ \gamma$ = (a2 + b2 + c2)/4S;
б)  a2ctg$ \alpha$ + b2ctg$ \beta$ + c2ctg$ \gamma$ = 4S.

Решение

а) Так как  bc cos$ \alpha$ = 2Sctg$ \alpha$, то  a2 = b2 + c2 - 4Sctg$ \alpha$. Складывая три аналогичных равенства, получаем требуемое.
б) Для остроугольного треугольника  a2ctg$ \alpha$ = 2R2sin 2$ \alpha$ = 4SBOC, где O — центр описанной окружности. Остается сложить три аналогичных равенства. Для треугольника с тупым углом $ \alpha$ величину SBOC нужно взять со знаком минус.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 12
Название Вычисления и метрические соотношения
Тема Взаимоотношения между сторонами и углами треугольников. Решение треугольников.
параграф
Номер 6
Название Тангенсы и котангенсы углов треугольника
Тема Тангенсы и котангенсы углов треугольника
задача
Номер 12.044

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .