ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57839
Темы:    [ Центральная симметрия помогает решить задачу ]
[ Симметричная стратегия ]
Сложность: 3
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Двое игроков поочередно выкладывают на прямоугольный стол пятаки. Монету разрешается класть только на свободное место. Проигрывает тот, кто не может сделать очередной ход. Докажите, что первый игрок всегда может выиграть.

Решение

Первый игрок кладет пятак в центр стола, а затем кладет пятаки симметрично пятакам второго игрока относительно центра стола. При такой стратегии первый игрок всегда имеет возможность сделать очередной ход. Ясно также, что игра завершится за конечное число ходов.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 16
Название Центральная симметрия
Тема Центральная симметрия
параграф
Номер 1
Название Симметрия помогает решить задачу
Тема Центральная симметрия помогает решить задачу
задача
Номер 16.002

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .