ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57981
Тема:    [ Гомотетичные многоугольники ]
Сложность: 3
Классы: 9
В корзину
Прислать комментарий

Условие

В трапеции точка пересечения диагоналей равноудалена от прямых, на которых лежат боковые стороны. Докажите, что трапеция равнобедренная.

Решение

Пусть продолжения боковых сторон AB и CD пересекаются в точке K, а диагонали трапеции пересекаются в точке L. Согласно предыдущей задаче прямая KL проходит через середину отрезка AD, а по условию задачи эта же прямая делит пополам угол AKD. Поэтому треугольник AKD равнобедренный (см. задачу 16.1), а значит, трапеция ABCD тоже равнобедренная.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 19
Название Гомотетия и поворотная гомотетия
Тема Гомотетия и поворотная гомотетия
параграф
Номер 1
Название Гомотетичные многоугольники
Тема Гомотетичные многоугольники
задача
Номер 19.003

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .