ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57982
Тема:    [ Гомотетичные многоугольники ]
Сложность: 3
Классы: 9
В корзину
Прислать комментарий

Условие

Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M; P — произвольная точка. Прямая la проходит через точку A параллельно прямой PA1; прямые lb и lc определяются аналогично. Докажите, что:
а) прямые la, lb и lc пересекаются в одной точке Q;
б) точка M лежит на отрезке PQ, причем PM : MQ = 1 : 2.

Решение

При гомотетии с центром M и коэффициентом -2 прямые PA1, PB1 и PC1 переходят в прямые la, lb и lc, а значит, искомая точка Q является образом точки P при этой гомотетии.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 19
Название Гомотетия и поворотная гомотетия
Тема Гомотетия и поворотная гомотетия
параграф
Номер 1
Название Гомотетичные многоугольники
Тема Гомотетичные многоугольники
задача
Номер 19.004

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .