ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58056
Тема:    [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

Из каждой вершины многоугольника опущены перпендикуляры на стороны, её не содержащие. Докажите, что хотя бы для одной вершины одно из оснований перпендикуляров лежит на самой стороне, а не на её продолжении.

Решение

Возьмём наибольшую сторону AB данного многоугольника и рассмотрим полосу, состоящую из тех точек, проекции которых на прямую AB попадают на отрезок AB. Эту полосу должна пересекать какая-нибудь другая сторона CD многоугольника (одна из вершин C и D может совпадать с A или с B). Неравенство CD$ \le$AB показывает, что одна из вершин C и D лежит внутри или на границе полосы (если C = A или B, то вершина D лежит внутри полосы). Вершина, лежащая внутри или на границе полосы и отличная от A и B, обладает требуемым свойством.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 20
Название Принцип крайнего
Тема Принцип крайнего
параграф
Номер 2
Название Наименьшее или наибольшее расстояние
Тема Наименьшее или наибольшее расстояние (длина)
задача
Номер 20.010B

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .