ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58059
Темы:    [ Наименьшее или наибольшее расстояние (длина) ]
[ Системы точек ]
Сложность: 5+
Классы: 8,9
В корзину
Прислать комментарий

Условие

На плоскости дано конечное число точек, причем любая прямая, проходящая через две из данных точек, содержит еще одну данную точку. Докажите, что все данные точки лежат на одной прямой (Сильвестр).

Решение

Предположим, что не все данные точки лежат на одной прямой. Проведем через каждую пару данных точек прямую (этих прямых конечное число) и выберем наименьшее ненулевое расстояние от данных точек до этих прямых. Пусть наименьшим будет расстояние от точки A до прямой BC, где точки B и C данные. На прямой BC лежит еще одна из данных точек — некоторая точка D. Опустим из точки A перпендикуляр AQ на прямую BC. Две из точек B, C и D лежат по одну сторону от точки Q, например C и D. Пусть для определенности CQ < DQ (рис.). Тогда расстояние от точки C до прямой AD меньше, чем расстояние от точки A до прямой BC, что противоречит выбору точки A и прямой BC.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 20
Название Принцип крайнего
Тема Принцип крайнего
параграф
Номер 2
Название Наименьшее или наибольшее расстояние
Тема Наименьшее или наибольшее расстояние (длина)
задача
Номер 20.013

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .