ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58060
Тема:    [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 6
Классы: 8,9
В корзину
Прислать комментарий

Условие

На плоскости дано конечное число попарно непараллельных прямых, причем через точку пересечения любых двух из них проходит еще одна из данных прямых. Докажите, что все эти прямые проходят через одну точку.

Решение

Предположим, что не все прямые проходят через одну точку. Рассмотрим точки пересечения прямых и выберем наименьшее ненулевое расстояние от этих точек до данных прямых. Пусть наименьшим будет расстояние от точки A до прямой l. Через точку A проходят по крайней мере три данные прямые. Пусть они пересекают прямую l в точках B, C и D. Опустим из точки A перпендикуляр AQ на прямую l. Две из точек B, C и D лежат по одну сторону от точки Q, например C и D. Пусть для определенности CQ < DQ (рис.). Тогда расстояние от точки C до прямой AD меньше, чем расстояние от точки A до прямой l, что противоречит выбору A и l.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 20
Название Принцип крайнего
Тема Принцип крайнего
параграф
Номер 2
Название Наименьшее или наибольшее расстояние
Тема Наименьшее или наибольшее расстояние (длина)
задача
Номер 20.014

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .