ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58061
Тема:    [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 6
Классы: 8,9
В корзину
Прислать комментарий

Условие

На плоскости дано n точек и отмечены середины всех отрезков с концами в этих точках. Докажите, что различных отмеченных точек не менее 2n - 3.

Решение

Пусть A и B — наиболее удаленные друг от друга данные точки. Середины отрезков, соединяющих точку A (соответственно точку B) с остальными точками, все различны и лежат внутри окружности радиуса AB/2 с центром A (соответственно B). Полученные два круга имеют лишь одну общую точку, поэтому различных отмеченных точек не менее 2(n - 1) - 1 = 2n - 3.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 20
Название Принцип крайнего
Тема Принцип крайнего
параграф
Номер 2
Название Наименьшее или наибольшее расстояние
Тема Наименьшее или наибольшее расстояние (длина)
задача
Номер 20.015

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .