ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58096
Темы:    [ Принцип Дирихле (углы и длины) ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 5
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Внутри окружности радиуса n расположено 4n отрезков длиной 1. Докажите, что можно провести прямую, параллельную или перпендикулярную данной прямой l и пересекающую по крайней мере два данных отрезка.

Решение

Пусть l1 — произвольная прямая, перпендикулярная l. Обозначим длины проекций i-го отрезка на прямые l и l1 через ai и bi соответственно. Так как длина каждого отрезка равна 1, то ai + bi$ \ge$1. Поэтому (a1 +...+ a4n) + (b1 +...+ b4n)$ \ge$4n. Пусть для определенности a1 +...+ a4n$ \ge$b1 +...+ b4n. Тогда a1 +...+ a4n$ \ge$2n. Все данные отрезки проецируются на отрезок длиной 2n, так как они лежат внутри окружности радиуса n. Если бы проекции данных отрезков на прямую l не имели общих точек, то выполнялось бы неравенство a1 +...+ a4n < 2n. Поэтому на l есть точка, в которую проецируются точки по крайней мере двух данных отрезков. Перпендикуляр к l, проведенный через эту точку, пересекает по крайней мере два данных отрезка.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 21
Название Принцип Дирихле
Тема Принцип Дирихле
параграф
Номер 2
Название Углы и длины
Тема Принцип Дирихле (углы и длины)
задача
Номер 21.017

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .