ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58158
Тема:    [ Невыпуклые многоугольники ]
Сложность: 6
Классы: 9,10
В корзину
Прислать комментарий

Условие

С невыпуклым несамопересекающимся многоугольником производятся следующие операции. Если он лежит по одну сторону от прямой AB, где A и B — несмежные вершины, то одна из частей, на которые контур многоугольника делится точками A и B, отражается относительно середины отрезка AB. Докажите, что после нескольких таких операций многоугольник станет выпуклым.

Решение

При этих операциях векторы сторон многоугольника остаются теми же самыми; изменяется только их порядок (рис.). Поэтому имеется лишь конечное число многоугольников, которые могут получиться. Кроме того, после каждой операции площадь многоугольника строго возрастает. Следовательно, процесс конечен.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 22
Название Выпуклые и невыпуклые многоугольники
Тема Выпуклые и невыпуклые фигуры
параграф
Номер 6
Название Невыпуклые многоугольники
Тема Невыпуклые многоугольники
задача
Номер 22.028

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .