ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 58245
Условие99 прямых разбивают плоскость на n частей. Найдите все возможные значения n, меньшие 199.РешениеИндукцией по m легко доказать, что m прямых разбивают плоскость на 1 + m + x частей, где x — количество точек пересечения этих прямых с учётом их кратностей (это означает, что точка пересечения k прямых считается за k - 1 точек пересечения).Используя эту формулу и индукцию по m, можно доказать, что если среди данных m прямых есть три прямые, пересекающиеся в трёх различных точках, то эти m прямых разбивают плоскость по крайней мере на 2m + 1 частей. База индукции: m = 3; далее мы пользуемся тем, что проведение каждой новой прямой добавляет по крайней мере две новые части. Обращаясь к условию задачи, мы видим, что нас интересуют только конфигурации прямых, среди которых нет троек прямых, пересекающихся в трёх разных точках. Таким образом, либо все 99 прямых параллельны, либо все 99 прямых пересекаются в одной точке, либо 98 прямых параллельны и одна прямая их пересекает. Первая конфигурация разбивает плоскость на 100 частей, а обе остальные — на 198 частей. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|