ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58357
Темы:    [ Цепочки окружностей. Теорема Фейербаха ]
[ Касающиеся окружности ]
[ Инверсия помогает решить задачу ]
Сложность: 7+
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Докажите, что если существует цепочка окружностей S1, S2,..., Sn, каждая из которых касается двух соседних (Sn касается Sn - 1 и S1) и двух данных непересекающихся окружностей R1 и R2, то таких цепочек бесконечно много. А именно, для любой окружности T1, касающейся R1 и R2 (одинаковым образом, если R1 и R2 не лежат одна в другой, внешним и внутренним образом в противном случае), существует аналогичная цепочка из n касающихся окружностей T1, T2,..., Tn (поризм Штейнера).

Решение

Сделаем инверсию, переводящую R1 и R2 в пару концентрических окружностей. Тогда окружности S1*, S2*,..., Sn* и T1* равны между собой (рис.). Повернув цепочку S1*,..., Sn* вокруг центра окружности R1* так, чтобы S1* перешла в T1*, и сделав инверсию еще раз, получим нужную цепочку T1, T2,..., Tn.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 28
Название Инверсия
Тема Инверсия
параграф
Номер 6
Название Цепочки окружностей
Тема Цепочки окружностей. Теорема Фейербаха
задача
Номер 28.038

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .