ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58381
Тема:    [ Решение задач при помощи аффинных преобразований ]
Сложность: 3
Классы: 9,10
В корзину
Прислать комментарий

Условие

Дан треугольник ABC. Пусть O — точка пересечения его медиан, а M, N и P — точки сторон AB, BC и CA, делящие эти стороны в одинаковых отношениях (т. е. AM : MB = BN : NC = CP : PA = p : q). Докажите, что:
а) O — точка пересечения медиан треугольника MNP;
б) O — точка пересечения медиан треугольника, образованного прямыми AN, BP и CM.

Решение

а) Рассмотрим аффинное преобразование, переводящее треугольник ABC в правильный треугольник A'B'C'. Пусть O', M', N', P' — образы точек O, M, N, P. При повороте на 120o вокруг точки O' треугольник M'N'P' переходит в себя, поэтому этот треугольник правильный и O' — точка пересечения его медиан. Поскольку при аффинном преобразовании медиана переходит в медиану, O — точка пересечения медиан треугольника MNP.
б) Решение аналогично решению предыдущей задачи.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 29
Название Аффинные преобразования
Тема Аффинная геометрия
параграф
Номер 2
Название Решение задач при помощи аффинных преобразований
Тема Решение задач при помощи аффинных преобразований
задача
Номер 29.014

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .