ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58433
Тема:    [ Переведем данную прямую на бесконечность ]
Сложность: 6
Классы: 10,11
В корзину
Прислать комментарий

Условие

Пусть O — точка пересечения диагоналей четырехугольника ABCD, а E, F — точки пересечения продолжений сторон AB и CD, BC и AD соответственно. Прямая EO пересекает стороны AD и BC в точках K и L, а прямая FO пересекает стороны AB и CD в точках M и N. Докажите, что точка X пересечения прямых KN и LM лежит на прямой EF.

Решение

Сделаем проективное преобразование с исключительной прямой EF. Тогда четырехугольник ABCD перейдет в параллелограмм, а прямые KL и MN — в прямые, параллельные его сторонам и проходящие через точку пересечения диагоналей, т. е. в средние линии. Поэтому образы точек K, L, M, N являются серединами сторон параллелограмма и, следовательно, образы прямых KN и LM параллельны, т. е. точка X переходит в бесконечно удаленную точку, а значит, X лежит на исключительной прямой EF.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 30
Название Проективные преобразования
Тема Проективная геометрия
параграф
Номер 3
Название Переведем данную прямую на бесконечность
Тема Переведем данную прямую на бесконечность
задача
Номер 30.025

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .