ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58449
Тема:    [ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 6+
Классы: 10,11
В корзину
Прислать комментарий

Условие

Вневписанная окружность треугольника ABC касается стороны BC в точке D, а продолжений сторон AB и AC — в точках E и F. Пусть T — точка пересечения прямых BF и CE. Докажите, что точки A, D и T лежат на одной прямой.

Решение

Пусть A', B',... — образы точек A, B,... при проективном преобразовании, которое вневписанную окружность треугольника ABC переводит в окружность, а хорду EF — в диаметр (см. задачу 30.18). Тогда A' -- бесконечно удаленная точка прямых, перпендикулярных диаметру E'F', и нам нужно доказать, что прямая D'T' содержит эту точку, т. е. тоже перпендикулярна E'F'. Так как $ \triangle$T'B'E' $ \sim$ $ \triangle$T'F'C', то C'T' : T'E' = C'F' : B'E'. Но C'D' = C'F' и B'D' = B'E' как касательные, проведенные из одной точки, следовательно, C'T' : T'E' = C'D' : D'B', т. е. D'T'| B'E'.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 30
Название Проективные преобразования
Тема Проективная геометрия
параграф
Номер 4
Название Применение проективных преобразований, сохраняющих окружность
Тема Применение проективных преобразований, сохраняющих окружность
задача
Номер 30.041

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .