ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58461
Тема:    [ Применение проективных преобразований прямой в задачах на построение ]
Сложность: 6+
Классы: 10,11
В корзину
Прислать комментарий

Условие

Точки A и B лежат на прямых a и b соответственно, а точка P не лежит ни на одной из этих прямых. Циркулем и линейкой проведите через P прямую, пересекающую прямые a и b в точках X и Y соответственно таких, что длины отрезков AX и BY имеют а) данное отношение; б) данное произведение.

Решение

а) Обозначим через k число, которому должно равняться отношение AX/BY. Рассмотрим проективное преобразование прямой a, являющееся композицией проецирования прямой a на прямую b из точки P, движения плоскости, переводящего b в a и B в A, и, наконец, гомотетии с центром A и коэффициентом k. Искомая точка X является неподвижной точкой этого преобразования. Построение точки Y очевидно.
б) Обозначим через k число, которому должно равняться произведение AX . BY, через Q — точку пересечения прямых, проходящих через точки A и B параллельно прямым b и a соответственно, и пусть p = AQ . BQ. Рассмотрим проективное преобразование прямой a, являющееся композицией проецирования прямой a на прямую b из точки P, проецирования b на a из Q, и гомотетии с центром A и коэффициентом k/p. Пусть X — неподвижная точка этого преобразования, Y — ее образ при первом проецировании, а X1 — образ Y при втором проецировании. Докажем, что прямая XY искомая. Действительно, из подобия треугольников AQX1 и BYQ следует

AX1 . BY = AQ . BQ = p,

а значит,

AX . BY = (k/p)AX1 . BY = k.




Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 30
Название Проективные преобразования
Тема Проективная геометрия
параграф
Номер 6
Название Применение проективных преобразований прямой в задачах на построение
Тема Применение проективных преобразований прямой в задачах на построение
задача
Номер 30.054

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .