ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58506
Тема:    [ Кривые второго порядка ]
Сложность: 3
Классы: 10
В корзину
Прислать комментарий

Условие

Прямая l получена из директрисы параболы гомотетией с центром в фокусе параболы и коэффициентом 2. Из точки O прямой l проведены касательные OA и OB к параболе. Докажите, что ортоцентром треугольника AOB служит вершина параболы.

Решение

Касательные к параболе x2 = 4y в точках A = (2t1, t12) и B = (2t2, t22) пересекаются в точке O = (t1 + t2, t1t2). В рассматриваемом случае t1t2 = - 2. Теперь уже легко проверить, что точка (0, 0) является ортоцентром треугольника AOB.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 31
Название Эллипс, парабола, гипербола
Тема Неопределено
параграф
Номер 3
Название Парабола
Тема Кривые второго порядка
задача
Номер 31.039

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .