ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58510
Тема:    [ Кривые второго порядка ]
Сложность: 3
Классы: 10
В корзину
Прислать комментарий

Условие

Вершины треугольника лежат на гиперболе xy = 1. Докажите, что его ортоцентр тоже лежит на этой гиперболе.

Решение

Пусть a = $ \alpha$ + i$ \alpha^{-1}_{}$, b = $ \beta$ + i$ \beta^{-1}_{}$, c = $ \gamma$ + i$ \gamma^{-1}_{}$ — вершины данного треугольника на комплексной плоскости. Проверьте, что h = - $ \alpha$$ \beta$$ \gamma$ - i($ \alpha$$ \beta$$ \gamma$)-1 — его ортоцентр. Покажите, например, что число (a - h)/(b - c) чисто мнимое.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 31
Название Эллипс, парабола, гипербола
Тема Неопределено
параграф
Номер 4
Название Гипербола
Тема Кривые второго порядка
задача
Номер 31.043

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .