ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58546
Тема:    [ Кривые второго порядка ]
Сложность: 3
Классы: 10,11
В корзину
Прислать комментарий

Условие

Дан треугольник ABC и прямая l, не проходящая через его вершины.
а) Докажите, что кривая, изогонально сопряжённая прямой l, является эллипсом, если l не пересекает описанную окружность треугольника ABC; параболой если l касается описанной окружности; гиперболой если l пресекает описанную окружность в двух точках.
б) Докажите, что кривая, изотомически сопряжённая прямой l, является эллипсом, если l не пересекает описанный эллипс Штейнера треугольника ABC; параболой если l касается эллипса Штейнера; гиперболой если l пресекает эллипс Штейнера в двух точках.

Решение

а) При изогональном сопряжении описанная окружность переходит в бесконечно удалённую прямую (задача 2.90). Поэтому количество точек пересечения образа прямой l при изогональном сопряжении равно количеству точек пересечения прямой l с описанной окружностью. Ясно также, что коника является эллипсом, если она не пересекает бесконечно удалённую прямую; параболой — если касается; гиперболой — если пересекает в двух точках.
б) Рассмотрим аффинное преобразование, переводящее треугольник ABC в правильный треугольник A'B'C'. Для правильного треугольника изотомическое сопряжение одновременно является изогональным сопряжением. Ясно также, что изотомическое сопряжение инвариантно относительно аффинных преобразований. Поэтому задача б) следует из задачи а).

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 31
Название Эллипс, парабола, гипербола
Тема Неопределено
параграф
Номер 8
Название Коники, связанные с треугольником
Тема Кривые второго порядка
задача
Номер 31.079

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .