ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60288
Тема:    [ Системы счисления (прочее) ]
Сложность: 3-
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Факториальная система счисления. Докажите, что каждое натуральное число n может быть единственным образом представлено в виде

n = a1 . 1! + a2 . 2! + a3 . 3! +...,

где 0 $ \leqslant$ a1 $ \leqslant$ 1, 0 $ \leqslant$ a2 $ \leqslant$ 2, 0 $ \leqslant$ a3 $ \leqslant$ 3...


Подсказка

Воспользуйтесь тождеством из задачи 1.14.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 1
Название Метод математической индукции
Тема Индукция
параграф
Номер 2
Название Тождества, неравенства и делимость
Тема Индукция (прочее)
задача
Номер 01.015

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .