ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60365
Темы:    [ Раскраски ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Бесконечная клетчатая доска раскрашена в три цвета (каждая клеточка – в один из цветов).
Докажите, что найдутся четыре клеточки одного цвета, расположенные в вершинах прямоугольника со сторонами, параллельными стороне одной клеточки.


Подсказка

Пусть доска раскрашена в два цвета. Рассмотрим произвольный столбец. Один из цветов встречается в нем бесконечное число раз. Зафиксируем этот цвет. Вычеркнем из таблицы все строчки, которые в выбранном столбце не содержат фиксированный цвет. Покажите, что в оставшейся таблице можно найти четыре нужные клетки. Для решения задачи с произвольным числом цветов, примените индукцию.


© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .