ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 60433
УсловиеВ классе имеется a1 учеников, получивших в течение года хотя бы одну двойку, a2 учеников, получивших не менее двух двоек, ..., ak учеников, получивших не менее k двоек. Сколько всего двоек в этом классе? (Предполагается, что ни у кого нет более k двоек.) Решение 1Количество учеников, получивших ровно одну двойку, равно a1 – a2, ровно две двойки – a2 – a3, и т. д. Поэтому общее количество двоек равно Решение 2Занумеруем двойки каждого ученика в порядке их получения. Тогда a1 – количество первых двоек, a2 – количество вторых двоек, и т. д. Значит, количество всех двоек равно a1 + a2 + ... + ak. Замечание. Искушённый читатель сразу заметит здесь переход от диаграммы Юнга к симметричной.Ответa1 + a2 + ... + ak.Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|