ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60565
Темы:    [ Числа Фибоначчи ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Докажите следующие свойства чисел Фибоначчи:

а) F1 + F2 +...+ Fn = Fn + 2 - 1; в) F2 + F4 +...+ F2n = F2n + 1 - 1;
б) F1 + F3 +...+ F2n - 1 = F2n; г) F12 + F22 +...+ Fn2 = FnFn + 1.


Подсказка

Все равенства доказываются при помощи метода математической индукции.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 3
Название Алгоритм Евклида и основная теорема арифметики
Тема Алгебра и арифметика
параграф
Номер 4
Название О том, как размножаются кролики
Тема Классическая комбинаторика
задача
Номер 03.113

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .