ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60658
Темы:    [ Теорема Пифагора (прямая и обратная) ]
[ Уравнения в целых числах ]
[ Целочисленные треугольники ]
Сложность: 3
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Сколько имеется прямоугольных треугольников, длины сторон которых выражены целыми числами, если один из катетов этих треугольников равен 15?


Подсказка

Задача сводится к решению в натуральных числах уравнения  15² = x² – y² = (x – y)(x + y).  Каждое из четырёх разложения числа 225 на множители  (1·225, 3·75, 5·45, 9·25)  даёт одно решение уравнения.


Ответ

4 треугольника.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 4
Название Арифметика остатков
Тема Деление с остатком. Арифметика остатков
параграф
Номер 2
Название Делимость
Тема Теория чисел. Делимость (прочее)
задача
Номер 04.032

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .