ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60752
Темы:    [ Простые числа и их свойства ]
[ Малая теорема Ферма ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Докажите, что если  x² + 1  (x – целое) делится на нечётное простое p, то  p = 4k + 1.


Решение

Ясно, что x не делится на p. По малой теореме Ферма  1 ≡ xp–1 = (x²)(p–1)/2 ≡ (–1)(p–1)/2 (mod p).  Следовательно, число  p–1/2  чётно, что и требовалось.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 4
Название Арифметика остатков
Тема Деление с остатком. Арифметика остатков
параграф
Номер 4
Название Теоремы Ферма и Эйлера
Тема Малая теорема Ферма
задача
Номер 04.126

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .