ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60757
Темы:    [ Простые числа и их свойства ]
[ Малая теорема Ферма ]
[ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Пусть p – простое число и  p > 5.  Докажите, что если разрешимо сравнение  x4 + x3 + x2 + x + 1 ≡ 0 (mod p),  то   p ≡ 1 (mod 5).
Выведите отсюда бесконечность множества простых чисел вида  5n + 1.


Подсказка

См. решение задачи 60756.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 4
Название Арифметика остатков
Тема Деление с остатком. Арифметика остатков
параграф
Номер 4
Название Теоремы Ферма и Эйлера
Тема Малая теорема Ферма
задача
Номер 04.131

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .