ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60776
Темы:    [ Функция Эйлера ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Окружность разделена n точками на n равных частей. Сколько можно составить различных замкнутых ломаных из n равных звеньев с вершинами в этих точках?


Ответ

½ φ(n),  где φ(n) – количество чисел от 1 до n, взаимно простых с n.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 4
Название Арифметика остатков
Тема Деление с остатком. Арифметика остатков
параграф
Номер 4
Название Теоремы Ферма и Эйлера
Тема Малая теорема Ферма
задача
Номер 04.150

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .