ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 61053
Темы:    [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Интерполяционный многочлен Лагранжа ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Пусть A, B и C – остатки от деления многочлена P(x) на  x – a,  x – b  и  x – c.
Найдите остаток от деления того же многочлена на произведение  (x – a)(x – b)(x – c).


Решение

Пусть R(x) – искомый остаток. Тогда это многочлен не выше второй степени, который по теореме Безу в точках a, b и c принимает соответственно значения A, B и C. Тогда R(x) однозначно восстанавливается по формуле из задачи 61052.


Ответ

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 6
Название Многочлены
Тема Многочлены
параграф
Номер 6
Название Интерполяционный многочлен Лагранжа
Тема Многочлены (прочее)
задача
Номер 06.130

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .