ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 61063
Темы:    [ Рациональные функции (прочее) ]
[ Интерполяционный многочлен Лагранжа ]
Сложность: 4-
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Докажите, что если  f(x) – многочлен, степень которого меньше n, то дробь     (x1, x2, ..., xn  – произвольные попарно различные числа) может быть представлена в виде суммы n простейших дробей:  
где  A1, A2, ..., An  – некоторые константы.


Решение

f(x) = с1f1(x) + ... + сnfn(x),  где  сi = f(xi),  а многочлены   fi определены в задаче 61050. Осталось заметить, что согласно решению той же задачи функции     как раз и имеют вид  

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 6
Название Многочлены
Тема Многочлены
параграф
Номер 6
Название Интерполяционный многочлен Лагранжа
Тема Многочлены (прочее)
задача
Номер 06.140

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .