ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 61072
Тема:    [ Геометрия комплексной плоскости ]
Сложность: 2+
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Запишите с помощью неравенств следующие множества точек на комплексной плоскости:
  а) полуплоскость, расположенная строго левее мнимой оси;
  б) первый квадрант, не включая координатных осей;
  в) множество точек, отстоящих от мнимой оси на расстояние, меньшее 2;
  г) полукруг радиуса 1 (без полуокружности) с центром в точке O, расположенный не выше действительной оси.


Ответ

а)  Re z < 0;   б)  0 < arg z < π/4;   в)  |Re z| < 2;   г)  |z| < 1  и  Im z ≤ 0.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 7
Название Комплексные числа
Тема Неизвестная тема
параграф
Номер 1
Название Комплексная плоскость
Тема Неизвестная тема
задача
Номер 07.008

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .