ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 61122
Темы:    [ Тригонометрическая форма. Формула Муавра ]
[ Геометрическая прогрессия ]
Сложность: 4-
Классы: 10,11
В корзину
Прислать комментарий

Условие

Пусть  z = ei/n = cos /n + i sin /n.  Для произвольного целого a вычислите суммы
  а)  1 + za + z2a + ... + z(n–1)a;
  б)  1 + 2za + 3z2a + ... + nz(n–1)a.


Подсказка

б)  1 + 2t + 3t² + ... + nt(n–1) = (1 + t + t² + ... + tn)'.


Ответ

а) n, если a кратно n; 0 в противном случае.
б)  ½ n(n – 1),  если a кратно n;     в противном случае.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 7
Название Комплексные числа
Тема Неизвестная тема
параграф
Номер 1
Название Комплексная плоскость
Тема Неизвестная тема
задача
Номер 07.058

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .