ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 61147
Темы:    [ Основная теорема алгебры и ее следствия ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4-
Классы: 10,11
Название задачи: Положительные многочлены.
В корзину
Прислать комментарий

Условие

Многочлен P(x) при всех действительных x принимает только положительные значения.
Докажите, что найдутся такие многочлены a(x) и b(x), для которых  P(x) = a²(x) + b²(x).


Решение

Многочлен P(x) не имеет действительных корней, поэтому все его корни разбиваются на пары комплексно сопряженных чисел z1, z1, ..., zn, zn (см.задачу 61113). Пусть   (x – zk) = a(x) + ib(x).   Тогда   (x) = a(x) – ib(x).   Отсюда  P(x) = a²(x) + b²(x).

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 7
Название Комплексные числа
Тема Неизвестная тема
параграф
Номер 1
Название Комплексная плоскость
Тема Неизвестная тема
задача
Номер 07.083

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .