ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 61268
Темы:    [ Кубические многочлены ]
[ Теорема Виета ]
[ Симметрические многочлены ]
Сложность: 4-
Классы: 9,10,11
Название задачи: Дискриминант кубического уравнения.
В корзину
Прислать комментарий

Условие

Пусть уравнение  x³ + px + q = 0  имеет корни x1, x2 и x3. Выразите через p и q дискриминант этого уравнения   D = (x1x2)²(x² – x3)²(x3x1)².


Решение

  По теореме Виета  x1 + x2 + x3 = 0,  x1x2 + x1x3 + x2x3 = p,  x1x2x3 = – q,  откуда

  Значит,     Отсюда


Ответ

–4p³ – 27q².

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 9
Название Уравнения и системы
Тема Неопределено
параграф
Номер 1
Название Уравнения третьей степени
Тема Уравнения высших степеней. Возвратные уравнения
задача
Номер 09.017

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .