ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 61308
Тема:    [ Предел последовательности, сходимость ]
Сложность: 3+
Классы: 10,11
В корзину
Прислать комментарий

Условие

Числа a1, a2, ..., ak таковы, что равенство

$\displaystyle \lim\limits_{n\to\infty}^{}$(xn + a1xn - 1 +...+ akxn - k) = 0

возможно только для тех последовательностей {xn}, для которых $ \lim\limits_{n\to\infty}^{}$xn = 0. Докажите, что все корни многочлена

P($\displaystyle \lambda$) = $\displaystyle \lambda^{k}_{}$ + a1$\displaystyle \lambda^{k-1}_{}$ + a2$\displaystyle \lambda^{k-2}_{}$ +...+ ak

по модулю меньше 1.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 9
Название Уравнения и системы
Тема Неопределено
параграф
Номер 3
Название Итерации
Тема Алгебраические уравнения и системы уравнений (прочее)
задача
Номер 09.057

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .