ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 61405
Тема:    [ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Спортпрогноз. Предположим, что ожидается баскетбольный матч между двумя командами A и B, в котором возможно только два исхода: одна из команд выигрывает. Две букмекерские конторы принимают ставки с разными коэффициентами kA(1), kB(1), kA(2), kB(2). Например, если игрок сделал ставку N в первой конторе на команду A, и эта команда выиграла, то игрок получает сумму kA(1) . N. Пусть

kA(1) = 2, kB(1) = $\displaystyle {\textstyle\frac{3}{2}}$kA(2) = $\displaystyle {\textstyle\frac{4}{3}}$kB(2) = 3.

Как, имея капитал N, распорядиться им оптимальным образом, то есть как сделать ставки в двух конторах, чтобы получить максимальный гарантированный выигрыш?
Проанализируйте случай произвольных коэффициентов kA(1), kB(1), kA(2), kB(2) и найдите связь между максимальным гарантированным выигрышем и средним гармоническим наибольших коэффициентов.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 10
Название Неравенства
Тема Алгебраические неравенства и системы неравенств
параграф
Номер 2
Название Суммы и минимумы
Тема Алгебраические неравенства (прочее)
задача
Номер 10.054

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .