ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 61433
Темы:    [ Суммы числовых последовательностей и ряды разностей ]
[ Многочлены (прочее) ]
Сложность: 3
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Докажите, что если Q(x) – многочлен степени  m + 1,  то  P(x) = ΔQ(x)  – многочлен степени m.


Решение

Утверждение достаточно проверить для  Q(x) = xm+1.  В этом случае  ΔQ(x) = xm+1xm = (m + 1)xm + ... .

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 11
Название Последовательности и ряды
Тема Последовательности
параграф
Номер 1
Название Конечные разности
Тема Последовательности (прочее)
задача
Номер 11.006

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .