ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 61455
УсловиеОпределение. Пусть функция f (x, y) задана во всех точках плоскости с целыми координатами. Назовем функцию f (x, y) гармонической, если ее значение в каждой точке равно среднему арифметическому значений функции в четырех соседних точках, то есть:f (x, y)=1/4(f (x+1, y)+ f (x-1, y)+f (x, y+1) + f (x, y-1)). Пусть f (x, y) и g(x, y) — гармонические функции. Докажите, что для любых a и b функция af (x, y) + bg(x, y) также будет гармонической. РешениеГармоничность данных функций проверяется по определению.Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|