ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64185
Тема:    [ Графы (прочее) ]
Сложность: 2
Классы: 8
В корзину
Прислать комментарий

Условие

Числа в вершинах

В неориентированном графе без кратных ребер и петель
расставить в вершинах числа так, чтобы если вершины
соединены ребром, то числа имели общий делитель, а если нет - то нет.

Входные данные.
В файле INPUT.TXT записано число N (0<N<7) - количество вершин в графе.
Затем записана матрица смежности.

Выходные данные.
В файл OUTPUT.TXT вывести N натуральных чисел из диапазона Longint,
которые вы предлагаете приписать вершинам.

Пример файла INPUT.TXT	
3
0 1 1
1 0 0
1 0 0	

Пример файла OUTPUT.TXT
6 2 3

Подсказка

Задача на сообразительность (решение этой задачи от всех не требуется). Вариантов решения, наверно, много. Наиболее изящный выглядит так: припишем каждому ребру простое число (каждому свое). Тогда поставим в вершины числа, являющиеся произведением чисел, приписанных ребрам, выходящим из этой вершины.

Решение

Скачать архив тестов

Источники и прецеденты использования

Курс
предмет информатика
Название Основы программирования на языке Паскаль
Класс 8
Автор Матюхин Виктор Александрович
Место проведения Московская гимназия на Юго-Западе N1543
задача
Номер 163

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .