ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 64483
УсловиеНа каждой грани правильного тетраэдра с ребром 1 во внешнюю сторону построены правильные тетраэдры. Четыре их вершины, не принадлежащие исходному тетраэдру, образовали новый тетраэдр. Найдите его рёбра. РешениеПусть DABC – данный тетраэдр, О – ортогональная проекция вершины D на плоскость АВС, тогда О – центр треугольника АВС (см. рис. ). Первый способ. Рассмотрим РАВС и QBCD – два тетраэдра, построенные на гранях исходного тетраэдра Тогда PQ – ребро нового тетраэдра. Второй способ. Пусть М – точка пересечения медиан (центроид) исходного тетраэдра DABC, тогда М лежит на медиане DO тетраэдра и DM : MO = 3 : 1.
Тетраэдр РАВС симметричен исходному относительно плоскости АВС, поэтому О – середина отрезка DP. Следовательно, точка М лежит на отрезке DP и DM : MP = 3 : 5. ОтветКаждое ребро равно 5/3. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|