ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64565
Темы:    [ Системы точек ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Можно ли расставить шесть фотографов на площади таким образом, чтобы каждый из них мог сфотографировать ровно четырёх других? (Фотографы А и В могут сфотографировать друг друга, если на отрезке АВ нет других фотографов.)


Решение

Например, см. рисунок:

Не смогут сфотографировать друг друга только фотографы 1 и 4, 2 и 5, 3 и 6.


Ответ

Можно.

Источники и прецеденты использования

олимпиада
Название Московская математическая регата
год
Год 2013/14
класс
Класс 8
задача
Номер 8.3.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .