ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 64652
УсловиеНа клетчатой доске 5×5 Петя отмечает несколько клеток. Вася выиграет, если сможет накрыть все эти клетки неперекрывающимися и не вылезающими за границу квадрата уголками из трёх клеток (уголки разрешается класть только "по клеточкам"). Какое наименьшее число клеток должен отметить Петя, чтобы Вася не смог выиграть? РешениеПример. Петя может отметить клетки, указанные на рисунке слева. Тогда Вася не сможет одним уголком накрыть больше одной отмеченной клетки. Но девять уголков без наложений не разместить на доске, так как 27 > 25. Оценка. Если Петя отметит меньше девяти клеток, то хотя бы одна из указанных в примере чёрных клеток не будет отмечена. Тогда Вася сможет накрыть все клетки доски, кроме неё. Действительно, на рисунке справа заштрихованные клетки можно дополнить до уголков так, чтобы свободной оказалась только одна из клеток 1, 2 или 3. Если нужно исключить другую чёрную клетку, рисунок нужно повернуть.Ответ9 клеток. Замечания5 баллов Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|