ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64839
Темы:    [ Прямоугольники и квадраты. Признаки и свойства ]
[ Конкуррентность высот. Углы между высотами. ]
[ Поворот помогает решить задачу ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

На стороне AB квадрата ABCD отмечена точка K, а на стороне BC – точка L так, что  KB = LC. Отрезки AL и CK пересекаются в точке P.
Докажите, что отрезки DP и KL перпендикулярны.


Решение

Отрезок DK при повороте на 90° вокруг центра квадрата переходит в отрезок AL, поэтому эти отрезки перпендикулярны. Аналогично  DLCK.  Таким образом, прямые AL и CK содержат высоты треугольника DKL. Следовательно, P – его ортоцентр, а  DPKL.

Замечания

5 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 36
Дата 2014/15
вариант
Вариант осенний тур, базовый вариант, 8-9 класс
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .