ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64841
Темы:    [ Прямоугольные треугольники (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Подобные треугольники (прочее) ]
Сложность: 4-
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Даны N прямоугольных треугольников. У каждого выбрали по одному катету и нашли сумму их длин, затем нашли сумму длин оставшихся катетов и, наконец, нашли сумму длин всех гипотенуз. Оказалось, что три найденных числа являются длинами сторон некоторого прямоугольного треугольника. Докажите, что у всех исходных треугольников одно и то же отношение большего катета к меньшему, если
  а)  N = 2;
  б)  N – любое натуральное число, большее 1.


Решение

См. задачу 64844.

Замечания

1. Пункт а) нетрудно решить и чисто алгебраически. Для треугольников с катетами a, b и c, d условие записывается в виде     После двух возведений в квадрат и приведения подобных это равенство превращается в
(ad – bc)² = 0,  откуда и следует, что  a : b = c : d.

2. Баллы: 2 + 3.

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 36
Дата 2014/15
вариант
Вариант осенний тур, базовый вариант, 8-9 класс
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .