ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64916
Темы:    [ Четырехугольник: вычисления, метрические соотношения. ]
[ Теоремы Чевы и Менелая ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4
Классы: 9,10
В корзину
Прислать комментарий

Условие

В выпуклом четырёхугольнике ABCD  O – точка пересечения диагоналей, а M – середина стороны BC. Прямые MO и AD пересекаются в точке E. Докажите, что  AE : ED = SABO : SCDO.


Решение

Пусть P – точка пересечения AB и MO. Применяя теорему Менелая к треугольникам ABD и ABC, получаем   .  Следовательно,  

Замечания

Если  AB || MO,  то равенство остается верным, если положить  AP/PE = 1.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2012
тур
задача
Номер 14

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .