ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 64982
УсловиеВ треугольнике ABC середины сторон AC, BC, вершина C и точка пересечения медиан лежат на одной окружности. РешениеПусть C' – точка, симметричная C относительно середины AB. Тогда точки A, B, C' и ортоцентр треугольника ABC лежат на одной окружности (см. задачу 108949). С другой стороны, если A0, B0 – середины сторон BC, AC, то треугольник A0B0C гомотетичен треугольнику ABC' относительно центра тяжести M треугольника ABC с коэффициентом –½. Следовательно, описанные окружности этих треугольников касаются в точке M (см. рис.). Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|