ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 65139
УсловиеЕсть 13 золотых и 14 серебряных монет, из которых ровно одна фальшивая. Известно, что если фальшивая монета – золотая, то она легче настоящей, так как сделана из меньшего количества золота, а если фальшивая монета – серебряная, то она тяжелее настоящей, так как сделана из более дешевого и тяжелого металла. Как найти фальшивую монету за три взвешивания на чашечных весах без гирь? (Настоящие золотые монеты весят одинаково и настоящие серебряные монеты весят одинаково.) Решение Разобьём монеты три группы: две – по 4 золотых и 5 серебряных монет в каждой и одну группу из 5 золотых и 4 серебряных монет. Первым взвешиванием сравним веса первых двух групп. Если они равны, то фальшивая монета в третьей группе. Если не равны, то фальшивая монета или среди четырёх золотых с более легкой чаши, или среди пяти серебряных с более тяжёлой чаши. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|